- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Collin, Gabriel H. (1)
-
Erjavec, Tyler (1)
-
Perez, Kerstin (1)
-
Rodd, Nicholas L. (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The identification and description of point sources is one of the oldest problems in astronomy, yet even today the correct statistical treatment for point sources remains one of the field’s hardest problems. For dim or crowded sources, likelihood-based inference methods are required to estimate the uncertainty on the characteristics of the source population. In this work, a new parametric likelihood is constructed for this problem using compound Poisson generator (CPG) functionals that incorporate instrumental effects from first principles. We demonstrate that the CPG approach exhibits a number of advantages over non-Poissonian template fitting (NPTF)—an existing method—in a series of test scenarios in the context of X-ray astronomy. These demonstrations show that the effect of the point-spread function, effective area, and choice of point-source spatial distribution cannot, generally, be factorized as they are in NPTF, while the new CPG construction is validated in these scenarios. Separately, an examination of the diffuse-flux emission limit is used to show that most simple choices of priors on the standard parameterization of the population model can result in unexpected biases: when a model comprising both a point-source population and diffuse component is applied to this limit, nearly all observed flux will be assigned to either the population or to the diffuse component. A new parameterization is presented for these priors that properly estimates the uncertainties in this limit. In this choice of priors, CPG correctly identifies that the fraction of flux assigned to the population model cannot be constrained by the data.more » « less
An official website of the United States government
